Metric coset schemes revisited

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance Metric Learning Revisited

The success of many machine learning algorithms (e.g. the nearest neighborhood classification and k-means clustering) depends on the representation of the data as elements in a metric space. Learning an appropriate distance metric from data is usually superior to the default Euclidean distance. In this paper, we revisit the original model proposed by Xing et al. [24] and propose a general formu...

متن کامل

Designs in a coset geometry: Delsarte theory revisited

*KURAに登録されているコンテンツの利用については,著作権法に規定されている私的使用や引用などの範囲内で行ってください。 *著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には,著作権者の許諾を得てください。ただし,著作権者 から著作権等管理事業者(学術著作権協会,日本著作出版権管理システムなど)に権利委託されているコンテンツの利用手続については ,各著作権等管理事業者に確認してください。 Title Designs in a coset geometry: Delsarte theory revisited Author(s) Ito, Tatsuro Citation European Journal of Combinatorics, 25(2): 229-238 Issue Date 2004-02 Type Journal Article Text ...

متن کامل

Classical metric Diophantine approximation revisited

The idea of using measure theoretic concepts to investigate the size of number theoretic sets, originating with E. Borel, has been used for nearly a century. It has led to the development of the theory of metrical Diophantine approximation, a branch of Number Theory which draws on a rich and broad variety of mathematics. We discuss some recent progress and open problems concerning this classica...

متن کامل

Unconditionally Secure Signature Schemes Revisited

Unconditionally secure signature (USS) schemes provide the ability to electronically sign documents without the reliance on computational assumptions needed in traditional digital signatures. Unlike digital signatures, USS schemes require both different signing and different verification algorithms for each user in the system. Thus, any viable security definition for a USS scheme must carefully...

متن کامل

Benes and Butterfly Schemes Revisited

In [1], W. Aiello and R. Venkatesan have shown how to construct pseudo-random functions of 2n bits→ 2n bits from pseudo-random functions of n bits→ n bits. They claimed that their construction, called“Benes”, reaches the optimal bound (m ¿ 2) of security against adversaries with unlimited computingpower but limited by m queries in an adaptive chosen plaintext attack (CPA-2). However...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de l’institut Fourier

سال: 1999

ISSN: 0373-0956

DOI: 10.5802/aif.1695